This archive contains an ANSI C implementation of the algorithm for calculating of the decreasing of the flux. Currently, the algorithm is implemented for the linear, quadratic and square-root limb-darkening law. The decreasing of the flux of the binary system when radius and brightness at the center of eclipsed star equal unit, radius of the second (eclipsing) component equal r and the distance between centers of disks equal δ :

$$
\begin{array}{r}
\Delta \mathrm{L}(\delta, r)=\Delta \mathrm{L}_{0}(\delta, r)+\Lambda_{l}\left[\Delta \mathrm{~L}_{1}(\delta, r)-\Delta \mathrm{L}_{0}(\delta, r)\right]+\Lambda_{q}\left[2 \Delta \mathrm{~L}_{1}(\delta, r)-\Delta \mathrm{L}_{0}(\delta, r)-\Delta \mathrm{L}_{2}(\delta, r)\right]+ \\
+\Lambda_{Q}\left[\Delta \mathrm{~L}_{3}(\delta, r)-\Delta \mathrm{L}_{0}(\delta, r)\right] \tag{1}
\end{array}
$$

Here Λ_{l} is a linear limb-darkening coefficient, Λ_{q} is a quadratic limb-darkening coefficient, Λ_{Q} is a square-root limb-darkening coefficient. The header file "lustre.h"contain a prototype (headers) of the nine functions with two arguments each: L0, D1L0, D2L0, D11L0, D12L0, D22L0, L1, D1L1, D2L1, D11L1, D12L1, D22L1, L2, D1L2, D2L2, D11L2, D12L2, D22L2, L3, D1L3, D2L3. First argument is δ, second argument is r.
LX correspond to $\Delta \mathrm{L}_{x}$.
Prefix D1 correspond to derivative with respect to the first argument, $\frac{\partial}{\partial \delta}$.
Prefix D2 correspond to derivative with respect to the second argument, $\frac{\partial}{\partial r}$.
Prefix D11 correspond to second derivative with respect to first argument, $\frac{\partial^{2}}{\partial \delta^{2}}$.
Prefix D12 correspond to second derivative with respect to first and second argument, $\frac{\partial^{2}}{\partial \delta \partial r}$.
Prefix D22 correspond to second derivative with respect to second argument, $\frac{\partial^{2}}{\partial r^{2}}$.

The module "lustre.c"contains the implementation of these functions.

In addition, the archive contains points and weights used in the application of the Gaussian quadrature formula (in the form of C arrays in the file "gaussp.h"):

$$
\int_{0}^{1} h(t) \omega(t) d t \approx \sum_{l=1}^{N} w_{l} h\left(t_{l}\right) .
$$

Here $N=16$.
When $\omega(t)=1$, nodes t_{l} correspond to array "nodes_Legendre", and weights w_{l} correspond to array "weights_Legendre".
When $\omega(t)=-\sqrt{1-t} \ln (1-t)$, nodes t_{l} correspond to array "nodes_SqLn", and weights w_{l} correspond to array "weights_SqLn".
When $\omega(t)=\sqrt{1-t}$, nodes t_{l} correspond to array "nodes_Jacobi1d2" , and weights w_{l} correspond to array "weights_Jacobi1d2".
When $\omega(t)=(1-t)^{1 / \overline{4}}$, nodes t_{l} correspond to array "nodes_Jacobi1d4", and weights w_{l} correspond to array "weights_Jacobi1d4".
When $\omega(t)=(1-t)^{3 / 4}$, nodes t_{l} correspond to array "nodes_Jacobi3d4", and weights w_{l} correspond to array "weights_Jacobi3d4".

